Universals in complex, robust networks

Today’s focus on fundamentals

« Concepts: Complexity, robustness, and fragility
Theory: Fundamental laws, constraints, tradeoffs
Network architecture

lllustrate with “simple” and familiar case studies

Warm up with some (hopefully familiar) examples

John Doyle

John G Braun Professor
Control and Dynamical System, Electrical Engineering, BioEngineering
Caltech
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“*Architecture”

Most persistent, ubiquitous, and global features
of organization

Constrains what is possible for good or bad

Platform that enables (or prevents) innovation,
sustainability, etc,

Existing architectures are unsustainable

Internet, biology, energy, manufacturing,
transportation, water, food, waste, law, etc

Theoretical foundation is fragmented,
Incoherent, iIncomplete



Infrastructure networks?

Power

Transportation

Water f‘” e?famplgs of |

Waste bad archltectures.

“00d » Unsustainable
 Hard to fix

Healthcare

Inance

Where do we look for “good” examples?



Informative case studies in architecture

Internet and related technology (OS)

Systems biology (particularly, bacterial biosphere)
System medicine and physiology

Ecosystems (e.g. So Cal wildfire ecology)
Aerospace systems

Electronic Design Autom. (Platform Based Design)

Multiscale physics (turbulence, stat mech)

Misc: buildings/cities, Lego, clothing/fashion,
barter/markets/money/finance, social/political



e Successful architectures

* Robust, evolvable

* Universal, foundational

« Accessible, familiar

* Unresolved challenges
 New theoretical frameworks
* Boringly retro?

Simplest case studies

Internet Bacteria



e Universal, foundational




e Universal, foundational




Two lines of research:

1. Patch the existing Internet architecture
so it handles its new roles

« Real time

Techno- Control over (not just of)
sphere networks

« Action in the physical world

« Human collaborators and
adversaries

 Net-centric everything

Internet
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Modern theory and the Internet

Levels of

- Topics
understanding P
Verbal/cartoon Traffic
Data and Topology
statistics
Modeling and Control and
simulation dynamics
Analysis Layering
Synthesis Architecture




Recent progress (1995-)

Traffic | Topology | C&D | Layering | Architect.
Cartoon ?
Data/stat
Mod/sim
Analysis

Synthesis




Recent progress
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Architecture
IS not graph
topology.

Architecture
facilitates
arbitrary
graphs.
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Recent progress (1995-)
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Theoretical framework:
Constraints that deconstrain

 Layering as optimization

min [ [Rx—c|+|Rx—c|" d decomposition
' « Optimal control
‘X:argmi‘x" V.p, P=Rx-Cc .+ Robust control

= X, =argmax L, v,p « Game theory

ﬁ i « Network coding




Enormous progress

Theoretical  Layering as optimization
framework: - Optimal control
Constraints that * Robust control

» Game theory

deconstrain .
* Network coding

« Many robustness issues left unaddressed

« Secure, verifiable, manageable, maintainable, etc
* Architecture/policy, not part of control/dynamics
 How to expand the theory?



Cyber-Physical Theories?

* Thermodynamics
« Communications
 Control

« Computation

« Same robustness issues still unaddressed
* Architecture/policy, not part of any of these
« Each assumes an architecture a priori

* How to expand the theory?



Cyber Physical

Thermodynamics
Communications
Control
Computation

Thermodynamics
Communications
Control
Computation

Internet Bacteria

Case studies motivate integration



Cyber Physical

Thermodynamics
Communications
Control
Computation

Thermodynamics
Communications
Control
Computation

Promising unifications

A start but more Is needed



Two lines of research:
1. Patch the existing Internet architecture
2. Fundamentally rethink network architecture

Techno-
sphere

>

Internet



Architecture?

Traffic | Topology C&D Layering ArCh iteCt_

Cartoon ’?
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Analysis

Synthesis




1.
2. Fundamentally rethink network architecture




Biology versus the Internet

ST EYITES

« Evolvable architecture
Robust yet fragile
Constraints/deconstrain
 Layering, modularity
« Hourglass with bowties
« Feedback

« Dynamic, stochastic

 Distributed/decentralized
« Not scale-free, edge-of-chaos, self-
organized criticality, etc

Differences

« Metabolism

Materials and energy
 Autocatalytic feedback
» Feedback complexity

» Development and
regeneration

« >4B years of evolution
* How the parts work?



The dangers of
naive biomemetics

Feathers
and

flapping? \} Or lift, drag, propulsion,
o and control?




Getting it (W)right, 1901

* “We know how to construct airplanes.” (lift and drag)

* “Men also know how to build engines.” (propulsion)

* “Inability to balance and steer still confronts students

of the flying problem.” (control)

* “When this one feature has been worked out, the age
of flying will have arrived, for all other difficulties are of
minor importance.”
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Getting 1t right, 2010, Control++
Architecture, networks,
robustness, and complexity

« Words we use all the time
« Often as their own antonym
Thus potential sources of confusion

Today: discuss a few basic ideas that seem
necessary

lllustrate with familiar examples



Biology versus the Internet

Similarities

« Evolvable architecture
Robust yet fragile
Constraints/deconstrain
 Layering, modularity
» Hourglass with bowties
« Feedback

« Dynamics

 Distributed/decentralized
« Not scale-free, edge-of-chaos, self-
organized criticality, etc

Differences

» Metabolism
Materials and energy
 Autocatalytic feedback
» Feedback complexity

» Development and
regeneration

« >4B years of evolution

Focus on
bacterial biosphere



“Central dogma” Network

| ?
DNA = RNA = Protein architecture”
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In the real (vs virtual) world

WHERNEUGE RS
e Action

What doesn’t:
e Data
 [Information
« Computation
 Learning

« Decision



Two lines of research:
1. Patch the existing Internet architecture
2. Fundamentally rethink network architecture

Techno-
sphere

>

Internet



Human complexity?

Robustness? Fragility?
Core
theory
challenges
Systems
Biology &

Medicine




Human complexity

Robust Fragile
© Metabolism ® Obesity, diabetes
© Regeneration & repair @ Cancer

© Healing wound /infect @ Autolmmune/Inflame



Mechanism?

Robust Fragile
© Metabolism ® Obesity, diabetes
© Regeneration & repair @ Cancer
© Healing wound /infect @ Autolmmune/Inflame

—at accumulation
nsulin resistance
Proliferation
nflammation

—at accumulation
nsulin resistance
Proliferation
nflammation

D ® D

D ® D



What’s the difference?

Robust Fragile
© Metabolism ® Obesity, diabetes
© Regeneration & repair @ Cancer
© Healing wound /infect @ Autolmmune/Inflame
® Fat accumulation
® Insulin resistance
® Proliferation
® Inflammation _
Fluctuating Static
energy energy

Accident or necessity?



What’s the difference?

Robust Fragile
© Metabolism ® Obesity, diabetes
© Regeneration & repair ® Cancer
© Healing wound /infect @ Autolmmune/Inflame

® Fat accumulation
® Insulin resistance
® Proliferation
® Inflammation

Controlled Uncontrolled
Dynamic Chronic
Low mean High mean

High variability Low variability



Restoring robustness

Robust

Controlled
Dynamic

_OW mean
High variabllity

Fragile

Uncontrolled
Chronic

High mean
Low variability



Human complexity

Robust Yet Fragile
© Metabolism ® Obesity, diabetes
© Regeneration & repair ® Cancer
© Microbe symbionts ® Parasites, infection
© Immune/inflammation ® Autolmmune/Inflame
© Neuro-endocrine ® Addiction, psychosis...
=] Complex societies 2 Epidemics, war...
=) Advanced technologies & Catastrophes
=] Risk “management” é Obfuscate, amplify,...

Accident or necessity?



Robust Fragile
© Metabolism ® Obesity, diabetes

© Regenerall @ Fat accumulation

® Proliferation
® Inflammation

Fragility < Hijacking, side effects, unintended...
Of mechanisms evolved for robustness
Complexity < control, robust/fragile tradeoffs
Math: New robust/fragile conservation laws

Both
Accident or necessity?



[a system] can have

[a property] robus_t for Fragile
[a set of perturbations]

Yet be fragile for

[a different property]

Or [a different perturbation]

Robust yet fragile = fragile robustness



a system] can have Apply recursively
a property] robust for
a set of perturbations]

2 Q&O‘Pe{w\

[ property] = robust for _
[one set of perturbations] fragile for

| property] or

| set of perturbations] [2 perturpy; :
on

Robust yet fragile = fragile robustness



[a system] can have

[a property] robus_t for Fragile
[a set of perturbations]

« Some fragilities are inevitable
In robust complex systems.

Robust

 But If robustness/fragility are conserved, what does it
mean for a system to be robust or fragile?



Gmek ge/:\)t

Fragile

« Some fragilities are inevitable
In robust complex systems.

Robust

 But If robustness/fragility are conserved, what does it
mean for a system to be robust or fragile?

 Robust systems systematically manage this tradeoff.
* Fragile systems waste robustness.



Definition: Resilience?

 Resilient systems effectively manage
fragility tradeoffs?

« How does architecture facilitate resilience?



Robust

© Metabolism

© Regeneration & repair
© Healing wound /infect

Fragility < Hijacking, side effects, unintended...
Of mechanisms evolved for robustness
Complexity < control, robust/fragile tradeoffs
Math: New robust/fragile conservation laws



Mechanism?

Robust
© Metabolism

© Regeneration & repair
© Healing wound /infect

®
®

®
Controlled ®
Dynamic
Low mean

High variability

—at accumulation
nsulin resistance
Proliferation

nflammation

Fluctuating
energy
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signaling
gene expression
metabolism
lineage

control

energy
More

complex
feedback

materials



control

energy
NEICHELS

Autocatalytic feedback



signaling
gene expression
metabolism
lineage
What theory Is relevant to

these more complex
feedback systems?

control _—

energy

More

complex
feedback
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Architectures

« Case studies
— Internet
— Bacterial biosphere

* Principles,
foundations

* Theory

Fun reading —

~ JONATHAN L. ZITTRAIN = -




Architecture resources

* Networking
— John Day, Patterns in Network Architecture
— Content Centric (CCN, Xerox Parc, Jacobson)
— Publish-Subscribe (PSIRP)
— Lawyers: Zittrain, Choo

* Biology (many, but here's a few)
— Gerhart and Kirschner (the big picture)
— De Duve (if you want to quickly learn biochemistry)
— Zimmer (if you want to learn about bacteria)
¢ Systems
— Donella Meadows



- @ awn - su yaAERBY W A Return to Fundamentals

T H E Nicholas Carr

. i ’ ’ \.i
Sir, I'm going to have to ask you to leave the internet.
You're just too fucking stupid.
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Naming and addressing

 Names needed to locate objects

« 2.5 ways to resolve a name
1. Exhaustive search, table lookup
2. Name gives hints

« Extra Y2 is for indirection

* Address is just a name that involves
locations



Operating systems

OS allocates and shares diverse
resources among diverse applications

Clearly separate (disaster otherwise)
— Application name space

— Logical (virtual) name/address space

— Physical (name/) address space

Name resolution within applications
Name/address translation across layers



In operating systems:
Don’t cross layers

O CPU/
% Mem M em




Benefits of stricter layering

“Black box” effects of stricter layering
» Portability of applications

« Security of physical address space
* Robustness to application crashes

 Scalability of virtual/real addressing

* Optimization/control by duality?
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Naming and addressing need to be
* resolved within layer

* translated between layers

* Not exposed outside of layer

Related issues W
* DNS

* NATS

* Firewalls o——— cp——*
* Multihoming

* Mobility

* Routing table size
* Overlays




Clean slate layering?

Two "macrolayers” with a new, higher “waist”
— Upper: Managing content, function, naming
— Lower: Managing physical resources, addressing

Lower layers: map to physical addresses (PNA)
— Recursive “microlayers” of control and management

— Different scopes (more global and lumped to more
local and detailed)

— No global addresses, hide details, addresses
Cleaner role of optimization and control?
Integration with naming and addressing
Align robustness and security



Catabolism

Precursors v

Crosslayer
autocatalysis

Inside every cell
AP

Enzymes




Lower layer autocatalysis
Macromolecules making ...

Enzymes

Three lower
layers? Yes:
* Translation

 Transcription . Ribosome
* Replication RNA [transc, » xRNA

RNAp
DNA Repl.ge'ene\ DNAp

.....

AA L transl. Proteins




Autocatalytic within lower layers
* Collectively self-replicating
* Ribosomes make ribosomes, etc

Three lower
layers? Yes:

_ Enzymes
 Translation y
 Transcription
* Replication AA [transl. > Proteins

Ribosome

Naturally RNA | transc. xRi\IA
recursive RNAp
DNA Repl.g;ek DNAp

.....
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Meta-layering of cyber-phys control
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Meta-layers

Cortex

Prediction

Goals
Actions

N
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© Dale Purves and R. Beau Lotto 2002

Dale Purves




In the brain:
Don’t cross layers

© Dale Purves and R. Beau Lotto 2002
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Meta-layers
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Meta-layers

Physiology
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Design tradeoffs

A

Wasteful Example design space:
_ Speed versus efficiency
=
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Complementary approaches

é bad ®

>

wasteful

hard bounds
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fragile

Find and
fix bugs



Standard theories are severely limited

« Each focuses on few dimensions

« Important tradeoffs are across these dimensions
« Speed vs efficiency vs robustness vs ...
Robustness is most important for complexity

% * Need “clean slate” theories
g * Progress is encouraging
=
* Thermodynamics (Carnot)
e Communications (Shannon)
slow  Control (Bode)

Computation (Turing)

g fragile?



1 TERABYTE

A $200 HARD DRIVE
THAT HOLDS
260,000 SONGS

TH

460 TERABYTES

ALL THE DIGITAL
WEATHER

DATA COMPILED
BY THE NATIONAL
CLIMATIC DATA
CENTER

PET
AGFE

‘All models are wron
you can succeed without them.”

20 TERA

PHOTOS
FACEBO

530 TERABYTES

ALL THE VIDEOS
ON YOUTUBE

THE END OF THEORY

cientists have always relied on hypothesis

THE END

OF THEORY

"ALL MODELS ARE WRQ)]

laimed statistician George
jox 30 years ago, and he was right. But
what choice did we have? Only mod-
els, from cosmological equations to
theories of human behavior, seemed to
be able to consistently, if imperfectly,
explain the world around us. Until now.

abundant data, don't have to settle for
wrong models. Indeed, they don't have
to settle for models atall

Sixty years ago, digital computers
made information readable. Twenty
years ago, the Internet made it reach-
able. Ten years ago, the first search
engine crawlers made it a single data-
base. Now Google and like-minded

he Petabyte Age is different
ecause more is different. Kilobytes
were stored on floppy disks. Mega-
bytes were stored on hard disks.
Terabytes were stored in disk arrays,
Petabytes are stored in the cloud.
As we moved along that progression,
we went from the felder analogy to
the file cabinet analogy to the library
analogy to—well, at petabytes we
ran out of organizational analogies.
At the petabyte scale, information
is not a matter of simple three- and
. .

and experimentation. Now, in the era of
massive data, there’s a better way.

good enough. No semantic or causal
analysis is required. That's why
Google can translate languages with-
out actually *knowing” them (given
equal corpus data, Google can trans-
late Klingon into Farsi as easily as it
can translate French into German).
And why it can match ads to content
without any knowledge or assump-
tions about the ads or the content.
Speaking at the O'Reilly Emerg-
ing Technology Conference this
past March, Peter Norvig, Geogle's
research director, offered an update
to George Box's maxim: "All models.
are wrong, and increasingly you can
§ithot tham "

and order,
but of dimensionally agnostk

se the tether of data as something
that can be visualized in its totality. It
forces us to view data mathematically
first and establish a context for it later.
For instance, Google conquered the
advertising world with nothing more
than applied mathematics. It didn't
pretend to know anything about the
culture and conventions of advertis-
ing—it just assumed that better data,
with better analytical tools, would win
the day. And Google was right.
Google's founding philosophy is
that we don't know why this page
is better than that one: If the statis-

gfincoming linke <o ba

g, and increasingly

This is a word where massive
amounts of data and applied mathe,
matics replace every other tool

that might be brought to bear. Out
with every theory of human behavjpr,
from linguistics to saciology. Forgd
taxonomy, ontology, and psycholofy.
Who knows why people do what fhey
do? The paint is they do it, and wi

can track and measure it with u
edented fidelif i




When will steam engines be 200% efficient?
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When will steam engines be 200% efficient?

Gas
Turbine (a)

Steam Turbine

\\\;5/

Diode (b)
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New words

« Peta-philia: Perverse love
of data and computation

« Peta-fop: Someone who
profits from peta-philia

 Exa-duhs: Loss of clue
from excessive peta-philia




L e Fortu nately
there seems

to be a
treatment

TTTTTTTTT
ooooooooooooo

Not yet in
widespread use



Standard theories are severely limited

« Each focuses on few dimensions

« Important tradeoffs are across these dimensions
« Speed vs efficiency vs robustness vs ...
Robustness is most important for complexity

% * Need “clean slate” theories
g * Progress is encouraging
=
* Thermodynamics (Carnot)
e Communications (Shannon)
slow  Control (Bode)

Computation (Turing)

g fragile?



Most dimensions are robustness
Collapse for visualization

Robust Fragile

e Secure * Not ...

» Scalable * Unverifiable
* Evolvable * Frozen

* Verifiable ...

* Maintainable

» Designable

>

fragile



wasteful

waste
resources

'T

waste time

Important tradeoffs are
across these dimensions

Speed vs efficiency vs
robustness vs ...

Robustness Is most
Important for complexity

Collapse efficiency
dimensions

>

fragile



wasteful

log

But many existing systems

and architectures are clearly

far from any fundamental So fixing “bugs”

limits. 6 'bad @ ~ Inexisting
architectures has
most immediate

\\ Impact.
\
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What do we want from our systems/architectures?

« Efficient use of resources (sustainability)
— Small consumed environmental resources and produced waste
— Inexpensive components, small capital investment
— Efficient processes: Design, manufacture, maintain, manage

* Robustness to perturbations
— Reject external disturbance and suppress internal noise
— Tolerate component failures and uncertainty
— Secure against malicious attack and hijacking
— Scalable to large system size
— Evolvable on long time scales to large changes
— Human actors have aligned incentives

* Predictable, Verifiable, Understandable
— Limit unintended conseguences
— Experiments and data that are easily reproducible
— Models (simple and analyzable), elegant theorems, short proofs
— EXxperience that is reliable guide to the future

There are hard tradeoffs (laws) among/between these



Complexity In reality

* lllustrative examples can be bewildering
— requires daunting domain details

— dominated by (poorly understood) robustness tradeoffs
not (more easily understood) minimal functionality

 Profound error/confusion
— within mainstream science
— even more confusion at policy level

» Lack of shared epistemologies
— Even the most basic elements of discourse are in dispute

— Nature of evidence, proof, statistics, valid argument,...
— What is meant by “complexity, nonlinearity,...”



Case studies in efficiency, robustness, complexity

Physiology/architecture/evolution
— Bacteria

— Human

— Ecosystem

Network architecture/evolution

— Internet (comms and computing), cyberphys

— Power, transportation, water, waste, etc...

— Manufacturing, supply chain, ...

— Markets, finance, economics,...

— Politics, sociology, religion, ...

“Toy” examples: Lego, fashion, games, art, literature,...
Many popular toy models are (unfortunately) misleading
Multiscale physics (stat mech, fluids, QM, ...)



(Not) Shared Epistemologies

* Policy/politics
— No consistent or coherent view of evidence, proof, etc
— ldeologies/agendas (not surprising, but) frustrating
« Science (i.e. physics) of “complexity”
— Dominates S&T input to policy and politics
— Internally coherent, but shockingly political, ideological
— But inconsistent with...
« Math, engineering, medicine and complexity
— Surprisingly consistent epistemology
— Yet fragmented and incoherent in detalls
— No common language or coherent voice
— Lose to ideologues with clear agendas



What we need to connect

* More integrated mathematics

* Real complex networks (Internet, smartgrid,...)
— Function and structure
— Architecture and control

« “Newseiences? (Complexity, networks, )

—~Creation science Intelligent design

— Self-or criticality
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Danger: bad scholarship ahead

* Huge literatures going back a century (at least)
— That | don’t know all that well (not my main research)
— Bewildering amount of domain details
— Persistent mysteries (and controversy)
— EXist consistent, coherent components of the story
— Even experts know only small fraction

« Large teams of collaborators (i.e. the real talent)

* Very “new” results
— Not “written up” yet, just the slides you see (sort of)
— Intended to be universal/accessible (but aren'’t yet)
— lllustrate principles beyond the domains
— Pedagogy, not depth



Universals In
complex, robust networks

oday’s focus on fundamentals

Concepts: Complexity, robustness, and fragility
Theory: Fundamental laws, constraints, tradeoffs
Network architecture

lllustrate with “simple” and familiar case studies

Warm up with some (hopefully familiar) example



